# SS SYSTEM CATALOG

#### Osstem Implant 2016-17 Comprehensive Catalog

Overall Planning/Editing PR Department Design Team

Supervision Implant Lab, Marketing PM

Production/Distribution Marketing & Planning Team

Date of Publication 2016.Publisher Osstem Implant

8th FL, World Meridian II, 123, Gasan digital 2-ro,

Geumcheon-gu, Seoul, Korea

Phone +82.2.2016.7000

Fax +82.2.2016.7001

www.osstem.com

OO3 INTRODUCTIONO12 CONTENTS

O16 SS SYSTEM

**066** REFERENCE



We are forever grateful to all the dentists who have given unwavering support to OSSTEM IMPLANT. We would like to take this opportunity to express our special thanks to all of our customers. Osstem has been continuously engaged in research and development, and over the past year our efforts have led to the launch of multiple new products.

We are excited to publish the 2016-17 Osstem Product Catalog, which showcases these new products and includes all the information you need to know about our fixtures, abutments, surgical tools and regenerative products. We spent countless hours editing, revising and rearranging this catalogue to make it the most comprehensive and user-friendly resource for Osstem products possible. Product codes, specifications and all the information you need about our products are at your fingertips.

A number of noteworthy additions have been introduced to the 2016 - 17 Osstem Product Catalog; each product is labeled with the newest products This is unclear. Also sounds impossible.

How do you label a 'product with a product'?. All product images are at the highest resolution possible, and a comprehensive description is provided with each item to ensure customers order correctly. As well, the quality of the 2D and 3D graphical illustrations of our components has been significantly enhanced.

The color-coding system has been expanded from just fixtures to include components as well as tools. In addition, complimentary products and equipment are listed "complimentary" means "free of charge". "complementary" means "compatible". Unless you plan to give your products away you may want to change this.

Finally, the included QR codes link you to videos of the products being used in actual surgeries. It is our sincere hope that the 2016 - 17 Osstem Product Catalog will become an invaluable resource for you in your practice. Thank you!

CEO of OSSTEM IMPLANT
Choi Kyu-ok (DDS.Ph.D)

Olidilywol



### 1997

- **01** Established 'OSSTEM Co., Ltd.'
- 12 Released 'Doobunae' (health insurance claim application software program)

### 2001

- 01 Obtained CE-0434 certification
- **03** Established AIC Training Center

2002

- **04** Obtained GOST-R certification (Russia)
  - **12** Established 12 overseas branches (first round)

company name to

Osstem Implant Co., Ltd

### 2008

- **01** Established Osstem Bone Science Research Center
- 12 Selected as a managing organization for the National Strategic Technology Development Project

- **01** Established Osstem Implant R&D Center
- **08** Obtained FDA certification. launched USII line
- 10 Launched SSII line

#### 2007

2006

**01** Changed the

- **02** Listed on KOSDAQ and began trading publicly
- **06** Selected as No. 1 products for the next generation and obtained TGA certification (Australia)

#### 2009

**10** Obtained approval for medical device manufacturing and sale from the Ministry of Health, Labor and Welfare, Japan

#### 2010

- 03 Launched TS III SA line 06 Launched TS III HA line
- **08** Selected as a business participating in the WPM Biomedical National Project
- 12 Users of Hanaro program exceeded 10,000

#### 2011

- 10 Obtained 'Health Canada' certification
- 12 Launched 'K2 Unit Chair, which was selected as a 'World Class Product'

#### 2013

- **01** Launched Osstem xenograft material 'A-Oss'
- 09 Launched 'K3 Unit Chair'
- 10 Selected as a 'Hidden Champion' company

### 2015

- **03** Established Osstem BioPharma Co., Ltd.
- 12 Awarded 'USD 50 Million Export Tower'

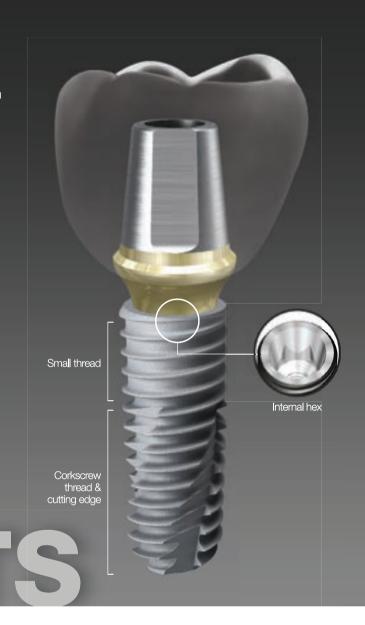
### 2011

- **06** Osstem Implant R&D Center was selected as ATC (Advanced Technology Center) 07 Established Osstem
- 07 Selected as 'World Champ' business

### 2012

- **06** Launched TSIII CA line
- Dental Equipment Research Institute

### 2014


- **05** Selected as World Class 300
- 05 Released 'HyFlex', an impression material
- 08 Released 'Beau TIS' whitening material

### 2000

- 06 Released 'Hanaro' (dentistry management software)
- 10 Acquired Sumin Comprehensive Dental Materials

## **OSSTEM®** Implant Design feature

OSSTEM IMPLANT has revolutionized implant dentistry in South Korea. With a focus on aggressive R&D, a commitment to education and a dedication to manufacturing the best products, Osstem Implant's ultimate goal is to become the global leader in implant dentistry.





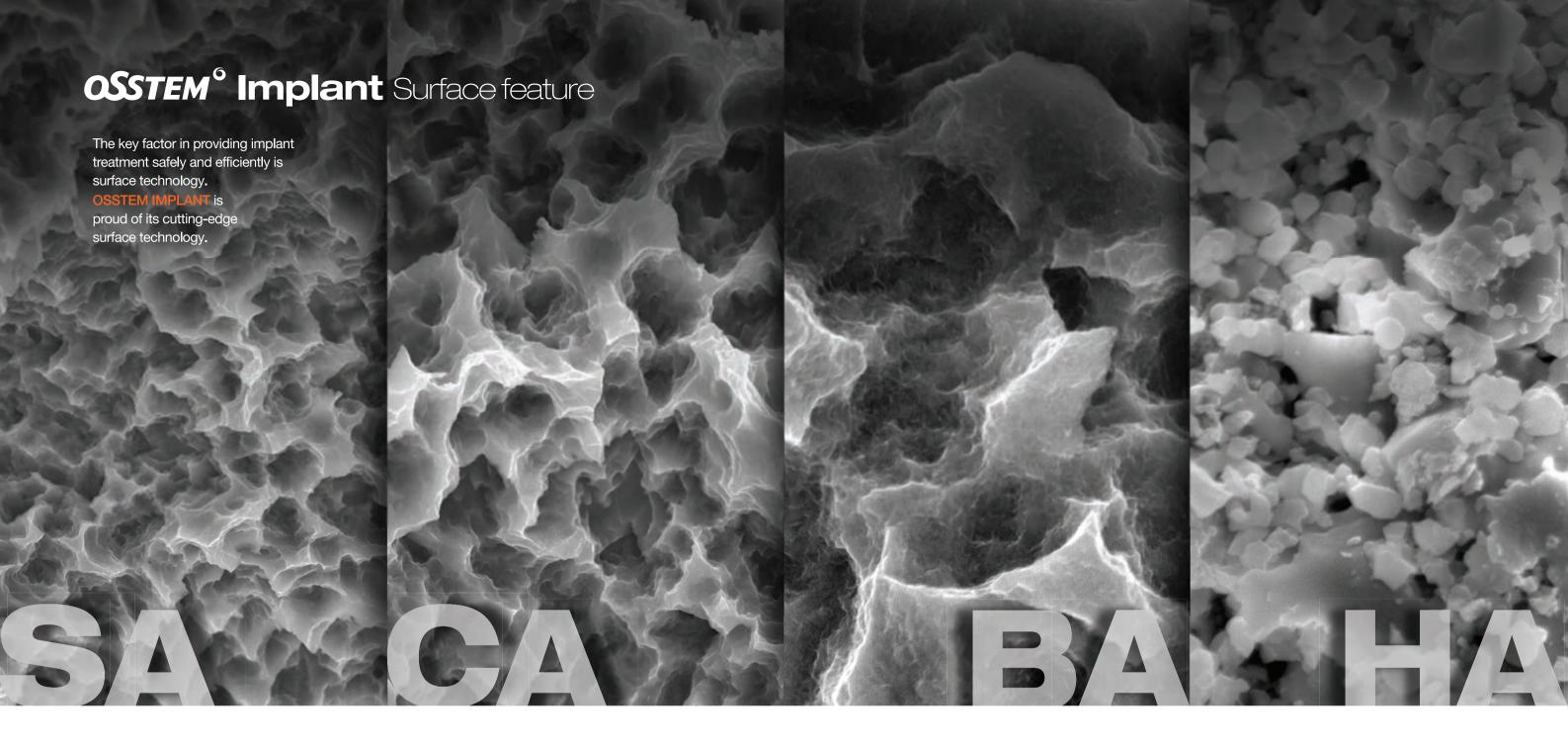






Each implant system has its own unique color code.

## Submerged type implant with an internal hex and 11° tapered connection


- Internal connection type Mini / Regular
- Excellent initial stability in soft bone due to smaller threads in the upper section
- · Corkscrew thread with cutting edges
- Easy path adjustments via the implant's excellent self-threading effect
- Higher initial stability and consistent insertion torque, regardless of the drill's diameter
- Different body types to properly match the patient's bone quality and clinical condition
- TSII (straight body type): Easy to adjust the insertion depth
- TSIII (1.5° tapered body type): Excellent initial stability necessary for immediate loading, even in soft bone
- TSIV (6° tapered body type): Specifically designed for the maxillary sinus and soft bone, excellent initial stability
- Available surface types SA / CA / BA / HA

### Non-submerged type implant with an internal octa and 8° tapered connection

- Internal connection type Regular / Wide
- Corkscrew thread with cutting edges
- Easy path adjustments via the implant's excellent self-threading effect
- Higher initial stability and consistent insertion torque, regardless of the drill's diameter
- Different body types to properly match the patient's bone quality and clinical condition
- SSII (straight body type): Easy to adjust the insertion depth
- SSIII (1.5° tapered body type): Excellent initial stability necessary for immediate loading, even in soft bone
- Available surface types SA / CA / HA

## Submerged type implant with an external hex connection structure

- Internal connection type Mini / Regular / Wide / Wide PS
- Corkscrew thread with cutting edges
- Easy path adjustments via the implant's excellent self-threading effect
- Higher initial stability and consistent insertion torque, regardless of the drill's diameter
- Different body types to properly match the patient's bone quality and clinical condition
- USII (straight body): Easy to adjust the insertion depth
- USIII (1.5° tapered body): Excellent initial stability necessary for immediate loading, even in soft bone
- USIV (6° tapered body): Specifically designed for the maxillary sinus and soft bone, excellent initial stability
- Available surface types SA / CA



#### **Acid Treated Optimized Surface**

- Surface roughness value of about Ra 2.5 to  $3.0 \mu m$  Note: The upper 0.5mm section of the implant has a surface roughness of about Ra 0.5 to  $0.6 \mu m$  Consistent surface micro pits between 1 to  $3 \mu m$
- Surface area is increased by 46 percent compared to RBM treated implants

#### In Bone Response

- Increased osteoblastic differentiation and ossification by 20 percent compared to RBM surface
- Initial bone response studied in animal models (mini pigs)
  Initial stability increased initial stability by
- 48 percent compared to RBM surface (RT at 4 weeks)
- Ossification rate increased ossification rate by 20 percent compared to RBM surface (BIC at 4 weeks)

## Super-hydrophilic SA surface suspended in a calcium solution

- · Same SA surface morphology
- Optimizing surface reaction by suspension in a calcium (CaCl2) solution
- · Increased new bone formation area due to the excellent blood wettability
- Bone response improved in early osseointegration stage compared to standard SA surface

#### In Bone Response

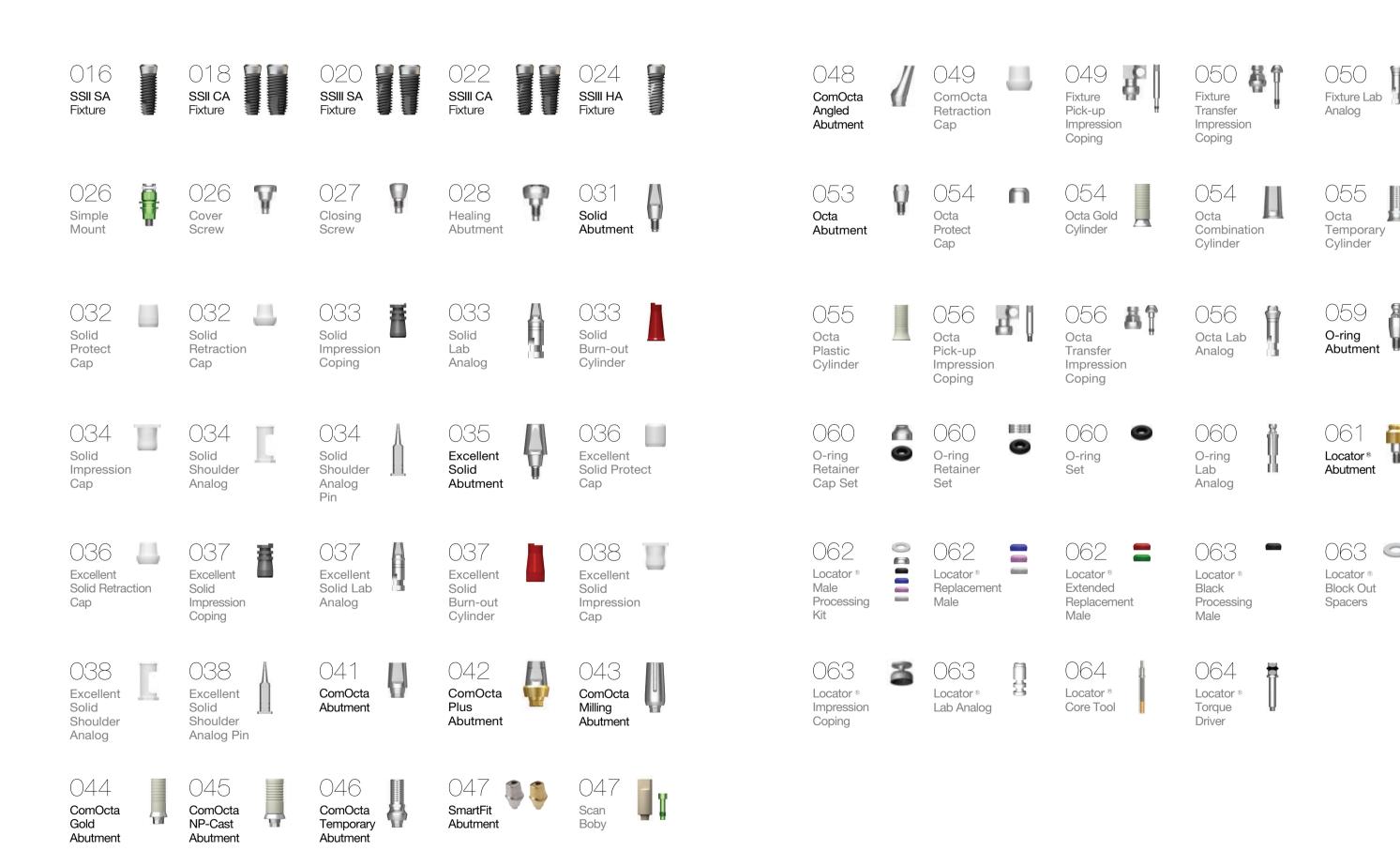
- Protein and cellular adhesion tripled compared to
   SA surfaces.
- Initial cellular differentiation by 19 percent compared to SA surfaces (7 days)
- Initial stability increased by 34 percent compared to SA surfaces (RT at 4 weeks)
- Ossification rate Increased by 26 percent compared to SA surfaces (BIC at 4 weeks)

## Premium low crystalline nano-HA coated SA surface

- · 10nm ultra-thin HA coating
- · Dual function between titanium and HA
- HA is naturally resorbed during ossification

## Premium high-crystalline HA-coated surface

- · 30 to 60 µm thick high-crystalline HA coating
- · HA coated onto a RBM surface (Ra 3.0 to 3.5μm)
- · High HA crystalline over 98 percent
- · Solved the problem with low-crystalline HA resorption


#### In Bone Response

- · Advantages of both SA and HA surfaces
- SA's ability to maintain an optimal surface morphology
- HA's ability to form high quality initial bone, even in a poor bone quality
- · Ossification rate increased by 40 percent compared to SA surfaces (BIC)
- · Unlike conventional HA surfaces, it is applicable to all types of bone quality

#### In-vitro & In-vivo Bone Response

- Excellent biocompatibility because HA is very similar to actual human bone
- · Initial ossification by osteoblasts doubled compared to SA surfaces (5 days)
- Initial stability in animal models increased by
   40 percent compared to SA surfaces (RT, 4 weeks)
- Suitable for poor bone quality, tooth extraction sites or immediate implant insertion

### **SS SYSTEM** Contents





### **FIXTURE**

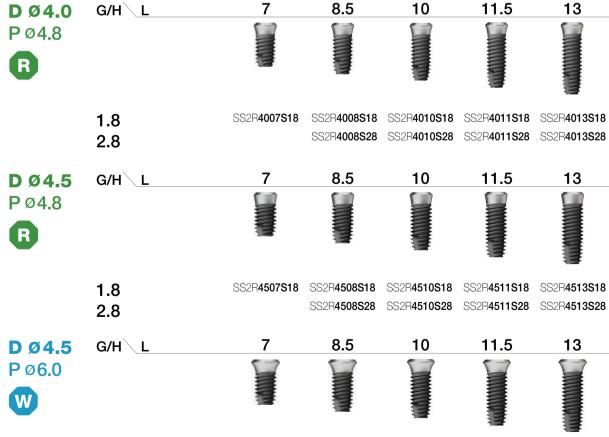
| 016 | SSII SA Fixture  |
|-----|------------------|
| 018 | SSII CA Fixture  |
| 020 | SSIII SA Fixture |
| 022 | SSIII CA Fixture |
| 024 | SSIII HA Fixture |
| 026 | Simple Mount     |
| 026 | Cover Screw      |
| 027 | Closing Screw    |
| 028 | Healing Abutment |

### COMPONENTS

|     | NOII CINLINIS              |
|-----|----------------------------|
| 030 | PROSTHETIC FLOW DIAGRAM 1  |
| 031 | Solid Abutment             |
| 035 | Excellent Solid Abutment   |
| 040 | PROSTHETIC FLOW DIAGRAM 2  |
| 041 | ComOcta Abutment           |
| 042 | ComOcta Plus Abutment      |
| 043 | ComOcta Milling Abutment   |
| 044 | ComOcta Gold Abutment      |
| 045 | ComOcta NP-Cast Abutment   |
| 046 | ComOcta Temporary Abutment |
| 047 | SmartFit Abutment          |
| 048 | ComOcta Angled Abutment    |
| 052 | PROSTHETIC FLOW DIAGRAM 3  |
| 053 | Octa Abutment              |
| 058 | PROSTHETIC FLOW DIAGRAM 4  |
| 059 | O-ring Abutment            |
| 061 | Locator® Abutment          |

- $\bullet$  Optimized screw thread design with the ideal SA surface
- Straight body design allows easy insertion depth adjustments
- Excellent initial stability in soft bone due to small threads in the upper section
- Corkscrew threading with excellent self-threading effect
- Recommended insertion torque: ≤40 Ncm
- Fixtures with a diameter of 4.5mm or more are recommended for the posterior area.


#### NoMount fixture order code


: fixture product code (ex : SS2R4011S18)

2.0

Pre-Mounted fixture (fixture + simple mount + cover screw) order code

: A + fixture product code (ex : ASS2R4011S18)





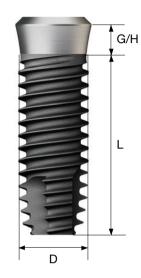
\$\$2W4507\$20 \$\$2W4508\$20 \$\$2W4510\$20 \$\$2W4511\$20 \$\$2W4513\$20



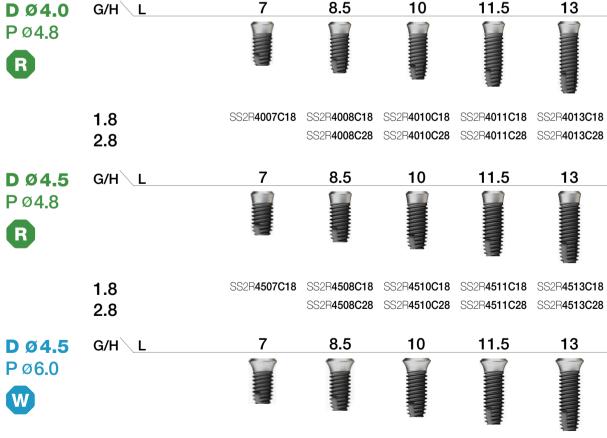
**2.0** SS2W5006S20 SS2W5007S20 SS2W5008S20 SS2W5010S20 SS2W5011S20 SS2W5013S20

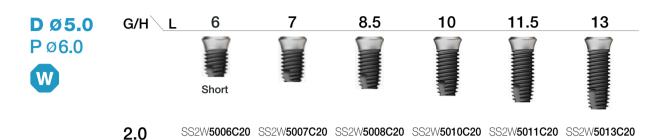
Nominal and actual diameters may slightly differ.

- Super-hydrophilic SA surface suspended in a calcium solution
- Straight body design allows easy insertion depth adjustments
- Excellent initial stability in soft bone due to small threads in the upper section
- Corkscrew threading with excellent self-threading effect

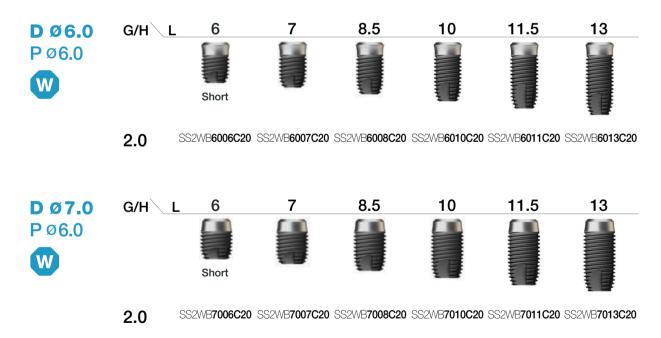

#### Ultra-wide

- Ideal for an extracted tooth site in the posterior area, for immediate placement, or for replacing a failed implant
- Apex is designed specially for excellent initial stability in an extracted tooth site
- Recommended insertion torque: ≤40 Ncm
- \* Fixtures with a diameter of 4.5mm or more are recommended for the posterior area.


#### NoMount fixture order code


: fixture product code (ex : SS2R4010C18)

2.0




\$\$2W4507C20 \$\$2W4508C20 \$\$2W4510C20 \$\$2W4511C20 \$\$2W4513C20





#### Ultra-wide



Nominal and actual diameters may slightly differ.

- Optimized screw thread design with the ideal SA surface
- Tapered body design with high initial stability
- Excellent initial stability in soft bone due to the small thread on the upper part
- Corkscrew threading with excellent self-threading effect
- Excellent initial stability necessary for immediate loading, even in soft bone

#### Ultra-wide

- Ideal for an extracted tooth site in the posterior area, for immediate placement, or for replacing a failed implant
- Apex is specifically design for excellent initial stability in an extracted tooth site
- Recommended insertion torque: ≤40 Ncm
- \* Fixtures with a diameter of 4.5mm or more are recommended for the posterior area.

#### NoMount fixture order code

: fixture product code (ex : SS3R4011S18)

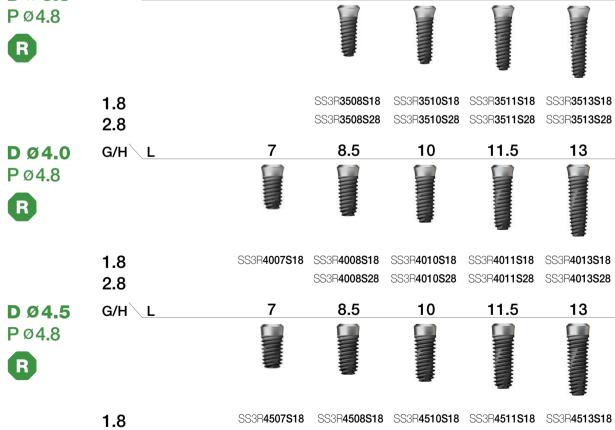
Pre-Mounted fixture (fixture + simple mount + cover screw) order code

: A + fixture product code (ex : ASS3R4011S18)

G/H\L

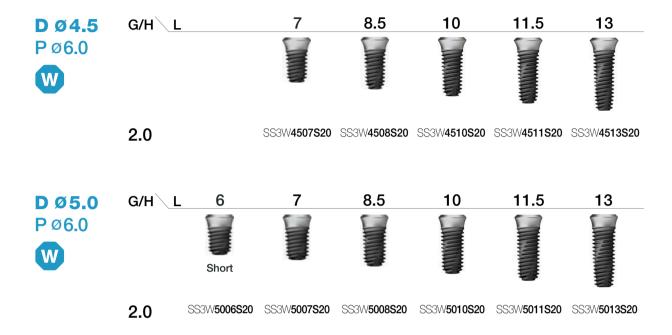
2.8




11.5

SS3R4508S28 SS3R4510S28 SS3R4511S28 SS3R4513S28

13


SS SYSTEM

D Ø 3.5



8.5

10

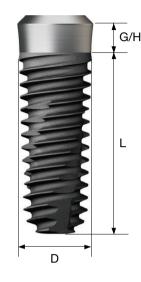


#### Ultra-wide





Nominal and actual diameters may slightly differ.


- Ideal for an extracted tooth site in the posterior area, for immediate placement, or for replacing a failed implant
- Apex is designed specially for excellent initial stability in an extracted tooth site
- Recommended insertion torque: ≤40 Ncm
- \* Fixtures with a diameter of 4.5mm or more are recommended for the posterior area.

#### NoMount fixture order code

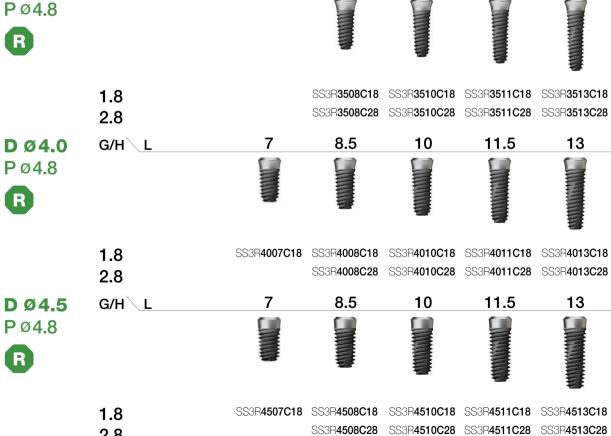
: fixture product code (ex : SS3R4011C18)

G/H\L

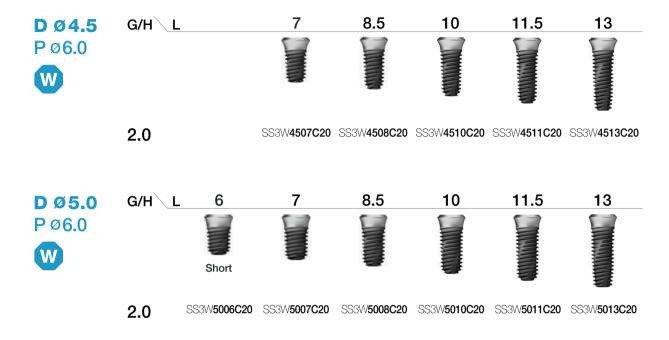
2.8



10


11.5

13




SS SYSTEM





8.5

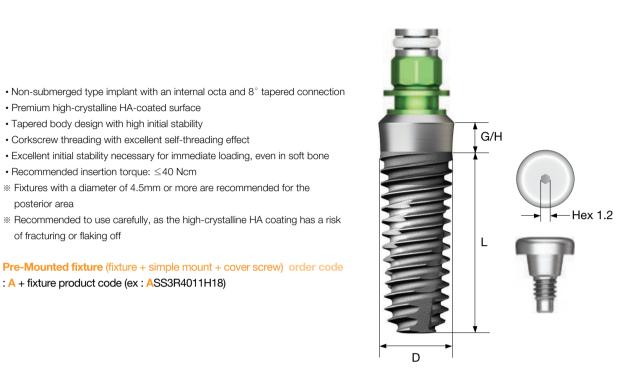


#### Ultra-wide





Nominal and actual diameters may slightly differ.


- Premium high-crystalline HA-coated surface
- Tapered body design with high initial stability
- Corkscrew threading with excellent self-threading effect
- Excellent initial stability necessary for immediate loading, even in soft bone
- Recommended insertion torque: ≤40 Ncm
- \* Fixtures with a diameter of 4.5mm or more are recommended for the posterior area
- \* Recommended to use carefully, as the high-crystalline HA coating has a risk of fracturing or flaking off

Pre-Mounted fixture (fixture + simple mount + cover screw) order code

: A + fixture product code (ex : ASS3R4011H18)

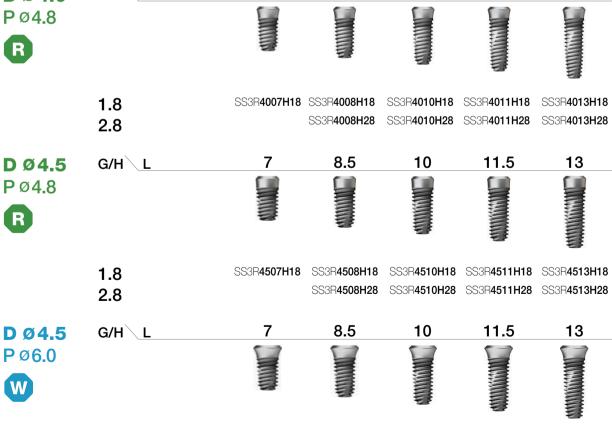
G/H\L

2.0

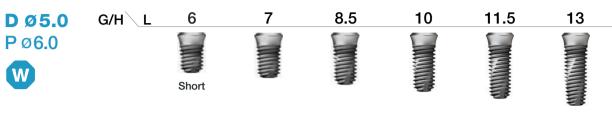


11.5

10


\$\$3W4507H20 \$\$3W4508H20 \$\$3W4510H20 \$\$3W4511H20 \$\$3W4513H20

13


SS SYSTEM

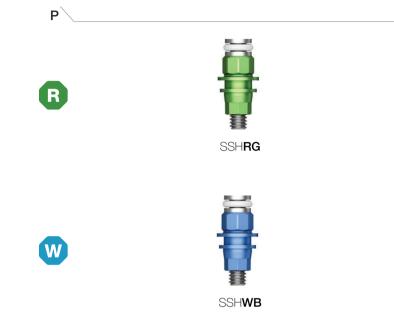
D Ø 4.0 P Ø 4.8

R



8.5




\$\$3\\\\5006\H20 \$\$3\\\\5007\H20 \$\$3\\\\5008\H20 \$\$3\\\\5008\H20 \$\$3\\\\5010\H20 \$\$\$3\\\5011\H20 \$\$\$2\\\5013\H20 2.0

Nominal and actual diameters may slightly differ.

- Use a 1.2 hex driver (fasten manually)
- \* Disposable; re-use is not allowed
- P = Platform








#### **Cover Screw**

- Select appropriate mount according to the fixture platform
- Use a 1.2 hex driver (fasten manually)
- P = Platform







- Use when there is insufficient soft tissue
- Use a 1.2 hex driver (fasten manually)
- P = Platform





SSCS600N

## **Healing Abutment**

- Select appropriate mount according to the
- Use a 1.2 hex driver (fasten manually)











SSH**482** 



3.0



4.0



5.0

2.0  $D \setminus H$ 



3.0



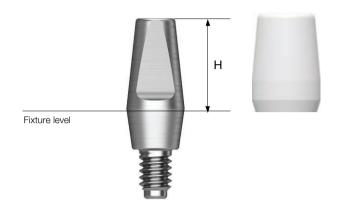
4.0



Ø 6.0

Ø 4.8




### Solid / Excellent Solid

Abutment Level Impression

- Cement-retained prosthesis
- Abutment level impression
- Ø 4.8: Connect using a solid abutment driver (code: SDSL/SDSS)
- Ø 6.0: Connect using a 1.2 hex driver or solid abutment driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + protect cap

#### Abutment + protect cap order code

: product code + P (ex : SSS485P)



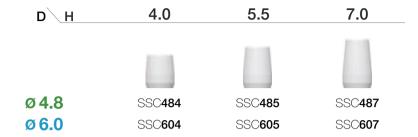






D Ø 6.0






#### Solid Protect Cap

- Protects the solid abutment and minimizes patient irritation
- Can be used as the base for a provisional crown



| • | Regular |  |  |
|---|---------|--|--|
|   | Wide    |  |  |



#### **Solid Retraction Cap**

- Used for accurate margin reproduction when taking a direct impression
- Can be used as the base for a provisional crown



W Wide



4.0

Ø 4.8 SSSRC484 Ø 6.0 SSSRC604

 $D \setminus H$ 



5.5

SSSRC485 SSSRC605 SSSRC487 SSSRC607

7.0

#### **Solid Impression Coping**

· Color coded by abutment height





#### Solid Lab Analog

• Connect to the appropriate color coded rigid impression coping







#### Solid Burn-out Cylinder

• Used after casting, clean the margin for proper fitting





### **Solid Abutment** Components

#### Solid Impression Cap

- An impression cap used when the solid abutment is trimmed
- Used with a solid shoulder analog and analog pin







#### Solid Shoulder Analog

- Lab analog for solid impression cap impressions
- Used with solid impression cap and shoulder analog pin







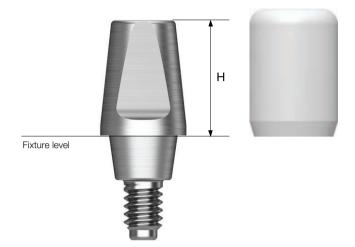
#### Solid Shoulder Analog Pin

- An impression coping component used when the solid abutment is trimmed
- Reinforces the narrow part of the abutment
- Used with a solid shoulder analog and impression cap



Regular





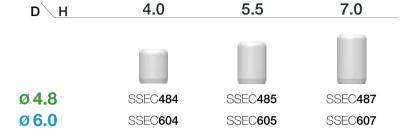

### **Excellent Solid Abutment**

- Cement-retained prosthesis
- Ideal for molar cases due to its larger volume (compared to the solid abutment), trim as needed
- · Abutment level impression
- Ø 4.8: Connect using a 1.2 hex driver or an excellent solid abutment driver (code: ESDSS/ESDSL)
- Ø 6.0: Connect using a 1.2 hex driver or an 60S excellent solid abutment driver (code: ESD60S)
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + protect cap

#### Abutment + protect cap order code

: product code + P (ex : SSE485P)





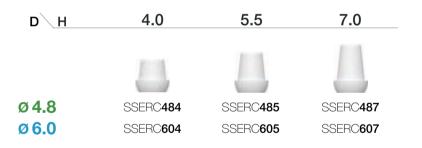



**Excellent Solid Protect Cap** 

- Protects the solid abutment and minimizes patient irritation
- Can be used as the base for a provisional crown






#### **Excellent Solid Retraction Cap**

- Used for accurate margin reproduction when taking a direct impression
- Can be used as the base for a provisional crown



SS SYSTEM





#### **Excellent Solid Impression** Coping

• Color coded by abutment height





#### **Excellent Solid Lab Analog**

• Connect to the appropriate color coded rigid impression coping





#### **Excellent Solid Burn-out** Cylinder

• Used after casting, clean the margin for proper fitting



Regular





## **Excellent Solid Abutment** Components

Ø 4.8

Ø 6.0

#### **Excellent Solid Impression** Cap

- An impression cap used when the solid abutment is trimmed
- Used with an excellent solid shoulder analog and an analog pin





### **Excellent Solid Shoulder** Analog

- Lab analog for Solid Impression Cap impressions
- Used with an excellent solid impression cap and a shoulder analog pin







SSEIP600

#### **Excellent Solid Shoulder Analog Pin**

- An impression coping component used when the solid abutment is trimmed
- Reinforces the narrow part of the abutment
- Used with an excellent solid shoulder analog and an impression cap











### ComOcta / SmartFit

Fixture Level Impression

041p 048p Ti Screw Ti Screw Octa ComOcta ComOcta ComOcta ComOcta ComOcta SmartFit **Abutment** Plus/Milling Gold/NP-Cast **Temporary Abutment** Angled Abutment Abutment Abutment Abutment 048p 041<sub>p</sub> 042/043p 044/045p046p 047pFixture Lab Analog Fixture Transfer Fixture Pick-up Impression Coping Impression Coping 050p 049pCover Screw Closing Screw Healing Abutment 026p 027p1.2 Hex Driver SSII SA SSII SA SSIII CA SSIII HA SSIII SA 018p016p 020p 024p

### **ComOcta Abutment**

- · Cement/combination-retained prosthesis
- Fixture level impression
- Able to take abutment level impression using a retraction cap
- Use a 1.2 hex driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + Ti screw

#### Abutment + Ti screw order code

: product code + TH (ex : SSCA485TH)







- Use when the gingiva is thick or the fixture is inserted deeply
- Abutment fastens to the platform at a 45° angle
- Fixture level impression
- Use a 1.2 hex driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + Ti screw

#### Abutment + Ti screw order code

: product code + TH (ex : SSCAP4826CTH)















## **ComOcta Milling Abutment**

- Cement/combination-retained prosthesis
- Used when the abutment's margin shape needs corrections
- Abutment fastens to the platform at a 45° angle
- Fixture level impression
- Use a 1.2 hex driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + Ti screw

#### Abutment + Ti screw order code

: product code + TH (ex : SSCMA4830TH)

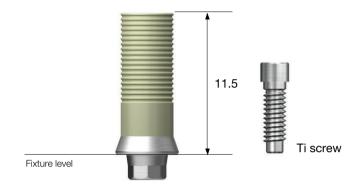


3.0 **D** Ø 4.8 \ G/H  $\mathbb{R}$ Ti screw : ASR200

SSCMA**4830** 



3.0 SSCMA**6030** 

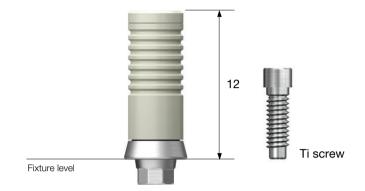

### **ComOcta Gold Abutment**

- Cement/combination/screw-retained prosthesis
- Customized prosthesis cast with gold alloy
- Abutment fastens to the platform at a 45° angle
- Abutment melting point: 1400~1450°C
- Fixture level impression
- Use a 1.2 hex driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + Ti screw

Abutment + Ti screw order code

: product code + TH (ex : COG480STH)

Type




### **ComOcta NP-Cast Abutment**

- Cement/combination/screw-retained prosthesis
- Customized prosthesis cast with non-precious alloys
- Abutment fastens to the platform at a 45° angle
- Abutment melting point: 1400~1450°C
- Fixture level impression
- Use a 1.2 hex driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + Ti screw

Abutment + Ti screw order code

: product code + TH (ex : CON480STH)





D Ø 4.8



Octa





Non-Octa



Ti screw

: ASR200



Octa

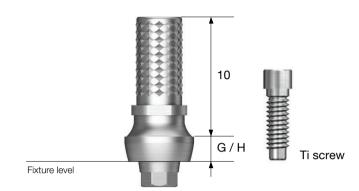
COG**600S** 












## **ComOcta Temporary Abutment**

- Cement/screw-retained prosthesis
- A trim able provisional prosthesis (made of Ti Gr-3)
- Fixture level impression
- Use a 1.2 hex driver
- Recommended tightening torque: 20Ncm
- Packing unit : abutment + Ti screw

#### Abutment + Ti screw order code

: product code + TH (ex : SSTAO480TH)



#### 0 2.0 0 2.0 D Ø 4.8 G/H Octa Non-Octa Type $\mathbf{R}$ Ti screw : ASR200 SSTAO480 SSTAN482 SSTAO482 SSTAN480



### **SmartFit Abutment**

- Cement/combination-retained prosthesis
- CAD/CAM designed and milled customized abutments
- Fixture level impression
- Lead time (by working days)
- Titanium: 5 days
- Titanium + gold color: 7 days
- Use a 1.2 hex driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + Ti screw



#### Scan Boby

- Scan body for manufacturing a titanium SmartFit abutment
- Use a 1.2 hex driver (fastened manually)
- Packing unit : scan body + Ti screw

#### Scan body + screw order code

: product code + TH (ex : SSSBMTH)

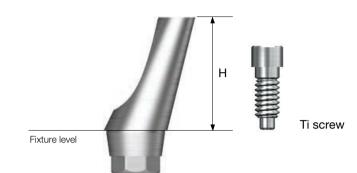




- Titanium SmartFit abutment 제작용 scan body
- 1.2 hex driver로 손 힘으로 체결
- Packing unit : scan body + Ti screw

#### Scan body + screw order code

: product code + TH (ex : SSSBMTH)




### **ComOcta Angled Abutment**

- Cement/combination-retained prosthesis
- Angle compensation between 15° and 20°
- Fixture level impression
- Fastened using a 1.2 hex driver
- Recommended tightening torque: 30Ncm
- Packing unit : abutment + Ti screw(only angled)

Abutment + Ti screw order code

: product code + TH (ex : SSA4815TH)









Angle

Type





**2**0°



15°



**20°** 







15°

SSA**4815** 



**20**°

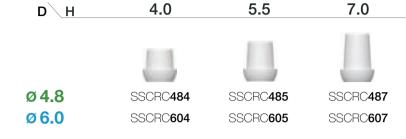
Octa



15°



**20**°


### ComOcta Abutment Components

#### ComOcta Retraction Cap

- Used for accurate margin reproduction when taking a direct impression
- Can be used as the base for a provisional crown







#### Fixture Pick-up Impression Coping

- For open tray impressions
- Unique design that is fixed position in the impression material
- Use a 1.2 hex driver (torque manually)
- Packing unit: impression coping body + guide pin(\*)



Regular (Silver)





- For closed tray impressions
- Triangular arc enabling precise placement

ComOcta Abutment Components

- Use a 1.2 hex driver (torque manually)
- Packing unit
- Octa : impression coping body + guide pin
- Non-octa : impression coping



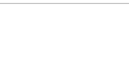
Regular (Silver)



Wide (Blue)



- A lab analog for fixture level impression
- Select an appropriate fixture platform; Ø 4.8 or Ø 6.0

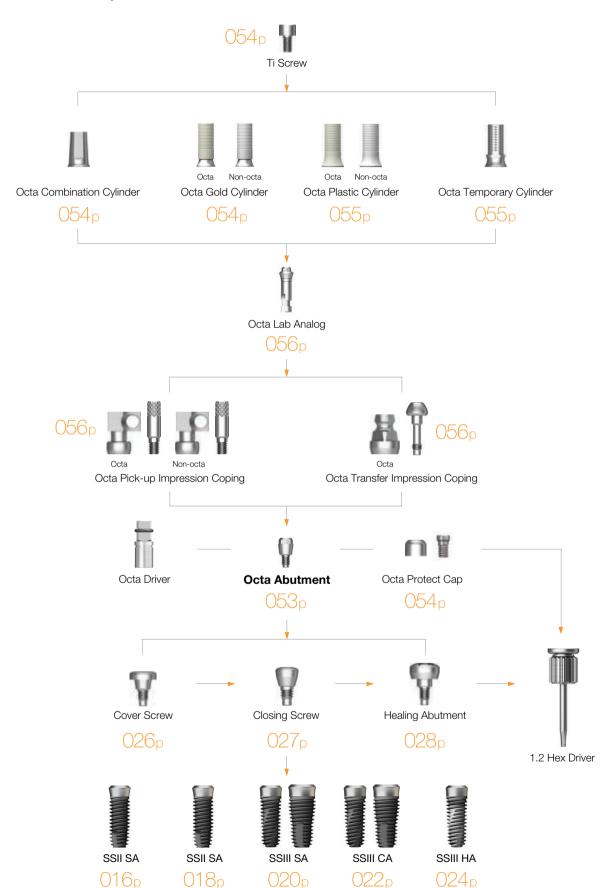



Regular (Silver)



Ø 4.8 Ø 6.0

D




SSFA480 SSFA600

#### PROSTHETIC FLOW DIAGRAM 3

### Octa

Abutment Level Impression



### **Octa Abutment**

- Screw-retained prosthesis for multiple prosthetic options
- Angle compensation of up to 60°
- Use a dedicated outer driver (code: ODSL/ODSS)
- Recommended tightening torque: 30Ncm



D Ø 4.8





D Ø 6.0





SSOA**600** 

### **Octa Abutment** Components

#### Octa Protect Cap

- Protective cap
- Use a 1.2 hex driver (fastened manually)
- Packing unit : protect cap + Ti screw

Protect cap + Ti screw order code

: product code + TH (ex : SSHC480TH)



Regular



D Ø 4.8 SSHC480 Ø 6.0 SSHC600

Ti screw

: SSFS (Ø 4.8 / Ø 6.0)

D Type

#### Octa Gold Cylinder

- Screw-retained prosthesis
- Customized prosthesis cast with gold alloy
- Cylinder melting point: 1400~1450°C
- Fastened using a 1.2 hex driver
- Recommended tightening torque: 20Ncm
- Packing unit : cylinder + Ti cylinder screw

#### Cylinder + Ti screw order code



SS SYSTEM

: product code + TH (ex : SSGCO480TH)



## R Regular



#### SSGCO480 SSGCN480 Ø 4.8 SSGCO**600** SSGCN600 Ø 6.0 Ti screw : SSFS (Ø 4.8/Ø 6.0)

12

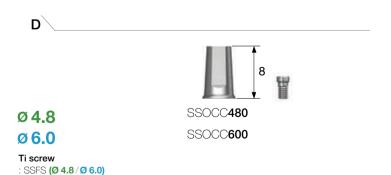
Octa

Non-Octa

12

#### Octa Combination Cylinder

- Combination-retained prosthesis
- Compatible both with Octa/non-octa specs
- Use a 1.2 hex driver
- Recommended tightening torque: 20Ncm
- Packing unit : cylinder + Ti cylinder screw


#### Cylinder + Ti screw order code

: product code + TH (ex : SSOCC480TH)



R Regular





#### Octa Temporary Cylinder

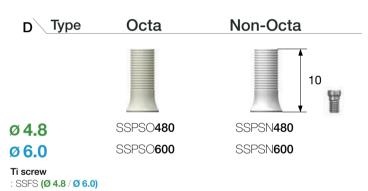
- Provisional prosthesis (Ti Gr-3)
- Fastened using a 1.2 hex driver
- Recommended tightening torque: 20Ncm
- Packing unit : cylinder + Ti cylinder screw

#### Cylinder + Ti screw order code

: product code + TH (ex : SSTCO480TH)






#### Octa Plastic Cylinder

- Screw-retained prosthesis
- Customized prosthesis cast with non-precious alloys
- Use a 1.2 hex driver
- Recommended tightening torque: 20Ncm
- Packing unit : cylinder + Ti cylinder screw

#### Cylinder + Ti screw order code

: product code + TH (ex : SSPSO480TH)







## Octa Abutment Components

#### Octa Pick-up Impression Coping

- A pick up impression coping for octa abutment
- Use a 1.2 hex driver (fastened manually)
- Packing unit : impression coping body + guide pin(\*)







### Octa Transfer Impression Coping

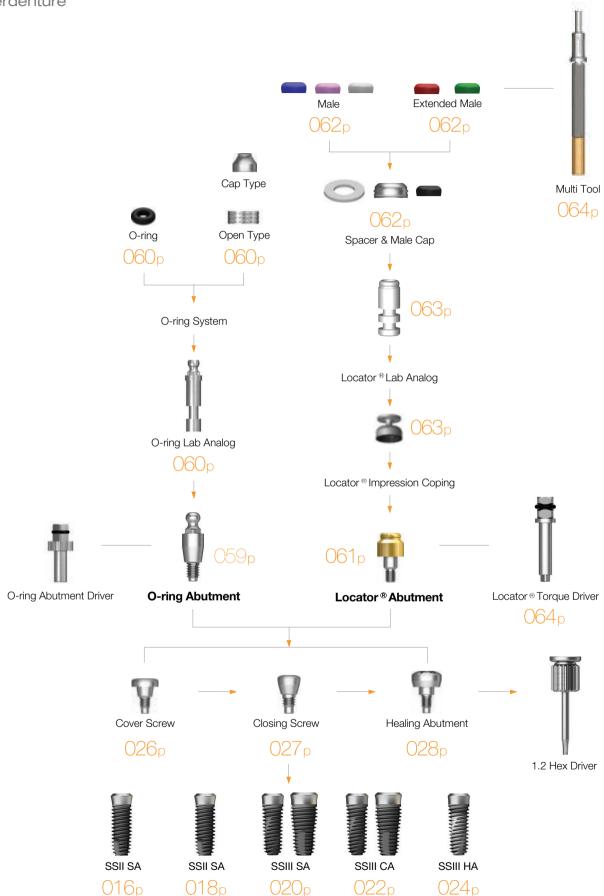
- A pick-up impression coping
- Use a 1.2 hex driver (fastened manually)
- Packing unit : Impression coping body + guide pin





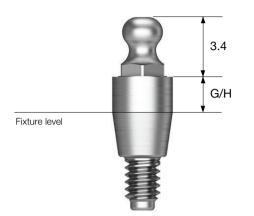
### D Ø 4.8 SSOTI480 Ø 6.0 SSOTI600

### Octa Lab Analog


- A lab analog
- Use a 1.2 hex driver (fastened manually)












## **O-ring Abutment**

- Retains overdenture with o-ring system
- $\bullet$  Angle compensation of up to  $20^\circ$
- Torque using an outer driver (code: AORD)
- Recommended tightening torque: 30Ncm





## O-ring Abutment Components

### O-ring Retainer Cap Set

- O-ring housing
- Place an appropriate o-ring in the metal housing before connecting to the abutment
- Packing unit : retainer cap + o-ring



RCS01

### O-ring Retainer Set

- Used when vertical dimension is shorter than the retainer cap
- Packing unit : retainer cap + o-ring





RS01

#### O-ring Set

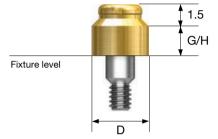
- O-ring set
- Packing unit : o-ring x 5ea



OAON01S

#### O-ring Lab Analog

A lab analog




### Locator® Abutment

- Genuine Zest Anchors abutment
- Angle compensation of up to 40°
- 1.5mm lower profile, attachment with various and stable retention
- Torque using a dedicated outer driver (code: TWLDLK/TWLDLSK)

G/H

• Recommended tightening torque: 30Ncm



D Ø 4.8





0.7



2.0



3.0



4.0

### Locator® Abutment Components

#### Locator R Male Processing Kit

- Components
- Block out spacer / denture cap connected black processing male
- Replacement male blue/pink/clear
- A full range of retentive males are included with each denture cap to allow personalized retention for each specific patient
- LOCATOR Core Tool places and removes nylon retentive males
- Packing unit : 2set

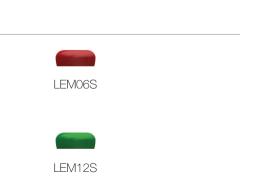


#### Locator Replacement Male

- Retention force: approx. 6N
- Angle compensation up to 20°
- Packing unit : 4ea
- Retention force: approx. 12N
- Angle compensation up to 20°
- Packing unit : 4ea
- Retention force: approx. 22N
- Angle compensation up to 20°
- Packing unit : 4ea






LRM12S



LRM22S

### Locator <sup>®</sup> Extended Replacement Male

- Retention force: approx. 6N
- Angle compensation up to 20° to 40°
- Packing unit : 4ea
- Retention force: approx. 12N
- Angle compensation up to 20° to 40°
- Packing unit : 4ea



#### Locator Black Processing Male

- A nylon male used in prosthesis fabrication process
- Packing unit : 4ea



LBPS

#### Locator Block Out Spacers

- Place block-out spacers on the heads of the LOCATOR® abutments. Position denture cap with integrated black processing onto the LOCATOR® abutments. If necessary, add additional block-out spacers until no gap is visible between female, block-out spacer and gum.
- Packing unit : 20ea

#### Locator Impression Coping

- A pick up impression coping
- Closed tray
- Packing unit : 4ea



#### Locator Lab Analog

- A lab analog
- Packing unit : 4ea



LAL50S

### Locator R Core Tool

- Places and removes nylon retentive males in the denture cap
- Separated into three different tools, includes a hand driver for locator abutment



#### Locator \* Torque Driver

• A torque driver for locator abutment





## **Osstem Implant Key References**

### Clinic

| No. | Title                                                                                                                                                                              | Reference / Author                                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1   | Retrospective clinical study of new tapered design implants in maxillary posterior areas                                                                                           | Oral Biology Research. 2013; 37(2):105-111 / Young-Kyun Kim et al.                                                 |
| 2   | A randomized controlled clinical trial of two types of tapered implants on immediate loading in the posterior maxilla and mandible                                                 | Int J Oral Maxillofac Implants.<br>2013 Nov-Dec;28(6):1602-11 (IF 1.908)<br>/ Young-Kyun Kim et al.                |
| 3   | Bony window repositioning without using a barrier membrane in the lateral approach for maxillary sinus bone grafts: clinical and radiologic results at 6 months.                   | Int J Oral Maxillofac Implants.<br>2012 27:211-217<br>/ Chang-Joo Park et al.                                      |
| 4   | A relaxed implant bed: implants placed after two weeks of osteotomy with immediate loading: a one year clinical trial.                                                             | J Oral Implantol. 2012 Apr;38(2):155-64  / Bansal J et al.                                                         |
| 5   | A multicenter prospective study in type IV bone of a single type of implant                                                                                                        | Implant Dent. 2012 Aug;21(4):330-34  / Su-Gwan Kim et al.                                                          |
| 6   | Comparison of clinical outcomes of sinus bone graft with simultaneous implant placement: 4-month and 6-month final prosthetic loading                                              | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2011 Feb;111(2):164-9<br>/ Young-Kyun Kim et al.              |
| 7   | Prospective study of tapered resorbable blasting media surface implant stability in the maxillary posterior area                                                                   | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2012 Feb 28. [Epub ahead of print]<br>/ Young-Kyun Kim et al. |
| 8   | A 1-year prospective clinical study of soft tissue conditions and marginal bone changes around dental implants after flapless implant surgery                                      | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2011 Jan;111(1):41-6<br>/ Byung-Ho Choi et al.                |
| 9   | Evaluation of peri-implant tissue in nonsubmerged dentallmplants: a multicenter retrospective study                                                                                | Clin Implant Dent Relat Res.<br>2011 Dec;13(4):324-9<br>/ Young-Kyun Kim et al.                                    |
| 10  | A relaxed implant bed: implants placed after two weeks of osteotomy with immediate loading: a one year clinical trial                                                              | J Oral Implantol. 2012 Apr;38(2):155-64<br>/ Bansal J et al.                                                       |
| 11  | A comparison of implant stability quotients measured using magnetic resonance frequency analysis from two directions: prospective clinical study during the initial healing period | Clin. Oral Impl. Res. 2010;21(6):591-7  / Jong-Ho Lee et al.                                                       |
| 12  | A short-term clinical study of marginal bone level change around microthreaded and platform-switched implants                                                                      | J Periodontal Implant Sci. 2011;41:211-217 / Kyoo-Sung Cho et al.                                                  |
| 13  | A randomized clinical one-year trial comparing two types of nonsubmerged dental implant                                                                                            | Clin. Oral Impl. Res. 2010;21(2):228-36  / Jong-Ho Lee et al.                                                      |
| 14  | Short-term, multi-center prospective clinical study of short implants measuring less than 7mm                                                                                      | J Kor Dent Sci. 2010;3(1):11-6 / Young-Kyun Kim et al.                                                             |
| 15  | Evaluation of peri-implant tissue in nonsubmerged dentallmplants: a multicenter retrospective study                                                                                | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2009;108(2):189-95<br>/ Young-Kyun Kim et al.                 |

| 16 | Evaluation of sinus bone resorption and marginal bone loss after sinus bone grafting and implant placement | Oral Surg Oral Med Oral Pathol Oral Radio<br>Endod. 2009;107:e21-8 |
|----|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|    |                                                                                                            | / Young-Kyun Kim et al.                                            |
| 17 | Evaluation of peri-implant tissue response according to the                                                | Oral Surg Oral Med Oral Pathol OralRadiol                          |
|    | presence of keratinized mucosa                                                                             | Endod. 2009;107:e24-8                                              |
|    | r                                                                                                          | / Young-Kyun Kim et al.                                            |
| 18 | Study on radiographic evaluation of marginal bone loss around                                              | J Kor Oral Maxillofac Surg. 2009;35:240-7                          |
|    | osseonintegrated implant after functional loading                                                          | / Young - Deok, Chee                                               |
| 19 | Four-year survival rate of RBM surface internal connection non-                                            | J Korean Assoc Maxillofac Plast Reconstr                           |
|    | submerged implants and the change of the peri-implant crestal bone                                         | Surg. 2009;31(3):237-42                                            |
|    |                                                                                                            | / Sok-Min Ko et al.                                                |

### Biology

| No. | Title                                                                                                                                         | Reference / Author                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 1   | Experiment study of bone response to hydroxyapatite coating implants: bone-implant contact and removal torque test                            | Oral Surg Oral Med Oral Pathol Oral Radiol.<br>2012 Jun 29. [Epub ahead of print]<br>/ Young-Kyun Kim et al. |
| 2   | Experimental study about the bony healing of hydroxyapatite coating implants                                                                  | J Kor Oral Maxillofac Surg.<br>2011;27(4):295-300<br>/ <b>Young-Kyun Kim et al.</b>                          |
| 3   | The use of autologous venous blood for maxillary sinus floor augmentation in conjunction with sinus membrane elevation: an experimental study | Clin. Oral Impl. Res. 2010;21:346-9<br>/ Byung-Ho Choi et al.                                                |
| 4   | Effects of soft tissue punch size on the healing of peri-Implant tissue in flapless implant surgery                                           | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2010;109:525-30<br>/ Byung-Ho Choi et al.               |
| 5   | Morphogenesis of the peri-implant mucosa: a comparison between flap and flapless procedures in the canine mandible                            | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2009;107:66-70<br>/ <b>Byung-Ho Choi et al.</b>         |
| 6   | A comparative study of two noninvasive techniques to evaluate implant stability: periotest and osstell mentor                                 | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2009;107:513-8<br>/ Su-Gwan Kim et al.                  |
| 7   | Influence of abutment connections and plaque control on the initial healing of prematurely exposed implants: an experimental study in dogs    | J Periodontol. 2008;79(6):1070-4  / Byung-Ho Choi et al.                                                     |
| 8   | Er:YAG laser irradiated implant surface observation with scanning electron microscopy                                                         | J Korean Assoc Maxillofac Plast Reconstr<br>Surg. 2008;30(6):540-5<br>/ Seung-Ki Min et al.                  |
| 9   | The effect of surface treatment of the cervical area of implant on bone regeneration in mini-pig                                              | J Kor Oral Maxillofac Surg. 2008;34:285-92<br>/ Hong-Ju Park et al.                                          |

| 10 | Histologic and histomorphometric evaluation of early and immediately loaded implants in the dog mandible                   | J Biomed Mater Res A. 2008;86:1122-7 / Su-Gwan Kim et al.                                          |
|----|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 11 | Effects of different depths of gap on healing of surgically created coronal defects around implants in dogs: a pilot study | J Periodontol. 2008;79(2):355-61  / June-Sung Shim et al.                                          |
| 12 | Comparative study of removal effect on artificial plaque from RBM treated implant                                          | J Korean Assoc Maxillofac Plast Reconstr<br>Surg. 2007;29(4):309-20<br>/ <b>Hee-Jyun Oh et al.</b> |

#### **Biomechanics**

| No. | Title                                                                                                                                                                     | Reference / Author                                                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1   | Evaluation of the correlation between insertion torque and primary stabilityof dental implants using a block bone test                                                    | J Periodontal Implant Sci. 2013;43:41-46 / Ki-Tae Koo et al.                                    |
| 2   | Self-cutting blades and their influence on primary stability of tapered dental implants in a simulated low-density bone model: a laboratory study                         | Oral Surg Oral Med Oral Pathol Oral Radiol<br>Endod. 2011;112:573-580<br>/ Young-Jun Lim et al. |
| 3   | Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant-abutment connection | Clin. Oral Impl. Res. 2011;22:834-9<br>/ Ki-Seong Kim et al.                                    |
| 4   | Effect of impression coping and implant angulation on the accuracy of implant impressions: an in vitro study                                                              | J Adv Prosthodont. 2010;2(4):128-33  / Seung-Geun Ahn et al.                                    |
| 5   | Influence of implant diameter and length changes on initial stability                                                                                                     | J Kor Acad Prosthodont. 2009;47:335-41 / Chang-Mo Jeong et al.                                  |
| 6   | Mechanical strength of zirconia abutment in implant restoration                                                                                                           | J KASFO. 2009;25(4):349-60 / Young-Chan Jeon et al.                                             |
| 7   | Heat transfer to the implant-bone interface during preparation of zirconia/alumina complex abutment                                                                       | Int J Oral Maxillofac Implants.<br>2009;24(4):679-83<br>/ Yong-Geun Choi et al.                 |
| 8   | Fatigue fracture of different dental Implant system under cyclic loading                                                                                                  | J Kor Acad Prosthodont.<br>2009;47(4):424-34<br>/ In-Ho Cho et al.                              |
| 9   | Effect of tightening torque on abutment-fixture joint stability using 3-dimensional finite element analysis                                                               | J Kor Acad Prosthodont.<br>2009;47(2):125-35<br>/ Chang-Mo Jeong et al.                         |
| 10  | The effect of various thread designs on the initial stability of taper implants                                                                                           | J Adv. Prosthodont. 2009;1:19-25<br>/ Young-Jun Lim et al.                                      |
| 11  | Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening                                                                                 | J Kor Acad Prosthodont.<br>2008;46(2):137-47<br>/ Chang-Mo Jeong et al.                         |

## User Manual 2013.02 ver.4.0 "Disposable, re-use prohibited, medical appliance"

#### Osstem Implant product information

Osstem Implant's dental fixtures and products are manufactured using medical grade Titanium. Osstem Implant's abutments, denture material and surgical tools are only compatible with Osstem fixtures. For more details about any individual product, please refer to the user manual or catalog, or visit our company website (www.osstem.com). Please check all product labels for product codes. specifications, date of manufacture and expiration date.

#### Sterility

Fixtures, cover screws and healing abutments are cleansed and gamma-sterilized. These products are disposable sterile medical appliances, and must be used in a sterile field. If the package is damaged or has expired, it must not be used. If the product package has been opened but not used, there is a risk of contamination and it is not recommended that the product resterilized and therefore should be discarded.

#### Storage conditions

Store all products in a dry place at room temperature (30oC). Avoid direct sunlight.

#### General precautions

Dental implant surgery requires proper and formal training and education.

#### Cautions before dental surgery

Before dental implant surgery, a thorough patient health history review, and oral radiographic examinations must be completed to determine bone quality and proper treatment planning.

#### Cautions during dental implant surgery

Osstem Implant Systems are for single or two stage dental implant procedures. In order to minimize damage to the patient's tissue, special attention to temperature, surgical lesions and eliminating all sources of contamination and infection are needed. Any deviation from the standard surgical protocol increases the risk of failure. When inserting the dental implant, sufficient cooling must be introduced (water or saline) and excessive torque (greater than 55Ncm) can result in dental implant fracture or possibly bone necrosis. Placing dental implants greater than 300 has a very high risk of implant fracture. Direct pressure to the fixture should be avoided right after surgery. Immediate or delayed loading of the fixture must be determined after proper examination of the patient's bone condition and initial

"Mini" implants or implants with a diameter less than 4.0mm are not recommended for the posterior region.

Ultra-wide dental implants are recommended for the posterior region but should not be used with angled abutments. If considering an Ultra-wide dental implant, proper radiographic evaluation must be made to determine the bone mass and potential anatomical restrictions. Short dental implants (diameter greater than 5mm and shorter than 7mm) are only used for the posterior region. The clinician must

thoroughly evaluate the patient's condition and recognized the following issues: 1) bone loss due to peri-implantitis, 2) changes to the dental implant condition. 3) proper osseointegration determined by a x-ray examination. If there is movement or if there is bone loss more than 50% removing the dental implant should be a course of action. Wide diameter implants should be performed as a two stage surgery. Sufficient healing time must be given before splinting with other implants or when loading. Immediate loading is not recommended.

Take care when placing dental implants with HA coating. The coating is prone to cracking or fracturing under high torque, therefore hard bone should be avoided and be inserted under 35Ncm of force.

CA and SOSI treated dental implants are encased in a solution to prevent the chemically treated surface from reacting with air. After removing the CA or SOSI dental implant, place the implant within 15 minutes to avoid degradation of the surface.

#### Warning

Improper patient selection and treatment planning may result in dental implant failure or loss of bone. Osstem Implants must not be used for purpose other than prescribed and must not be altered in any shape or form. Implant movement, bone loss, and chronic infections can result in implant failure.

#### Indications

Osstem Implant Systems are designed to replace a patient's tooth or teeth. They can be placed in both the maxillary and submaxillary alveolar bones and after full osseointegration can be restored prosthetically. Osstem Implant Systems offer both temporary and final prosthesis and can be retained by cement, screw, overdenture or fixed bridge.

#### Side effects

There are possible side effects after implant surgery (lost of implant stability, damage to dentures). These issues can be caused by the lack of bone or poor bone quality, an infection, patient's poor oral hygiene, non compliance with post op procedures, movement of the implant, degradation of surrounding tissue, or improper placement of the dental implant.

#### Contraindications

Patients with the following contraindications are not eligible for dental implants:

- Patients with blood clotting issues or issues with wound healing.
- Diabetic natients
- Patients that smoke or drink excessively
- Patient's with compromised immune systems due disease or chemo and radiation therapy.
- Patients with an oral infection or inflammation (improper oral hygiene or teeth
- Patients with an incurable malocclusion/arthropathia and insufficient arch space

Manufacturer: Osstem Implant Co., Ltd. 203, Geoje-daero, Yeonje-gu, Busan, Korea TEL 82-51-850-2500 FAX 82-51-861-4693

















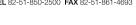


(8)

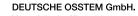
Do not reuse



M


Date of manufacture




Do not resterilize



Caution, Consult accompanying documents







Mergenthalerallee 25 65760 Eschborn, Germany +49-(0)6196-777-550





For USA only: Federal law restricts this device to sale by or on the order of a dentist

LOT

Keep dry

